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STATISTICAL PROPERTIES OF AN ISOTROPIC
RANDOM SURFACE

By M. S. LONGUET-HIGGINS
National Institute of Oceanography, Wormley

(Communicated by G. E. R. Deacon, F.R.S.—Received 26 February 1957)
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A number of statistical properties of a random, moving surface are obtained in the special case
when the surface is Gaussian and isotropic. The results may be stated with special simplicity for
a ‘ring’ spectrum when the energy in the spectrum is confined to one particular wavelength A.
In particular, the average density of maxima per unit area equals 77/(24/3 A2), and the average
length, per unit area, of the contour drawn at the mean level equals 77/(y/2 ).
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INTRODUCTION

Some of the statistical properties of a random, moving surface have been studied in a recent
paper (Longuet-Higgins 1957)1 in connexion with the analysis of sea waves. The surface
was there assumed to have a correlation function of general form. In the present paper
we shall discuss the special case when the surface is isotropic, that is to say, its statistical
properties are independent of direction. -
Although the corresponding properties of an isotropic spectrum are simpler than for

/ |\
A B

2 a spectrum of general form, to derive them from first principles would in most cases take
> E almost as long. In what follows, therefore, free use will be made of the more general results
2 = already obtained in (A).

mQ The paper falls into two main sections. The first defines the parameters used to describe
E 8 the surface, and discusses the relations between them. The second and main section derives

various statistical properties: the distributions of elevation and gradient; the mean number
of zeros along a line in arbitrary direction; the average length of contour per unit area,
and the average density of maxima and minima per unit area: All these properties are
independent of the motion. Next are considered the statistical distributions of the velocities
of zeros, of contours and of specular points on the surface (i.e. points where the components
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1 This will subsequently be referred to as (A).
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158 M. S. LONGUET-HIGGINS ON STATISTICAL

of the gradient take given values). The results are discussed in detail when the surface has
a ‘ring’ spectrum, that is to say, when the energy is confined to one particular wavelength,
while distributed uniformly with regard to direction. ,

In a final section the question is discussed of how far the spectrum is determined by its

statistical properties.

1. PARAMETERS FOR THE SURFACE
The energy spectrum

The surface under consideration is assumed to be representable as the sum of an infinity

of long-crested waves:
{(x,y,8) = X c,cos (u,x+v,y+0,t+¢,), (1)

where x and y are horizontal co-ordinates and ¢ denotes the time. The summation is over
a set of wave numbers (u,,v,) distributed densely throughout the («,) plane. The frequency
o, of each wave component depends only on the wavelength 27/w,, where

W, = (u§+1)721)%’ (2)

and the phases ¢, are randomly distributed in the interval (0,27). The amplitudes ¢, are

such that, over any element dudv
> 12 = E(u,v) dudo. (3)

The function E(u,v) is called the energy spectrum of {. Formally, it is the cosine transform
of the correlation function ¥ (x,y) defined by

: ]' X Y r 4 ! ’ / 4 / 4 4 ’
v(%y) = X,}’lgn_mmf_xf_yf_TC(x Y50 Lxtaly+y, 0) de'dy’de. (4)

In the special case considered in the present paper E(u,v) is assumed to have circular

symmetry about the origin, i.e.
E(u,v) = E(w), (5)

say, where w = (u24v2)% (6)

Moments of the spectrum

Parameters which frequently occur in the analysis of the general two-dimensional
spectrum are the moments m,,, m,, and my, defined by

Myq =foo fw E(u,v) utv?dudo,

Mg =f: flE(u, v) o (u,v) utv?dudo, (7)

Mg = f:o f_ow E(u,v) 0?(u,v) ubvddudy. ‘

For example, m,, defines the total energy of the surface per unit area. It is assumed that
the moments exist up to all orders required.

If we consider the intersection of the surface by a vertical plane in an arbitrary direction
0 (that is, the plane xsinf = ycosf) the resulting curve has a one-dimensional spectrum
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PROPERTIES OF AN ISOTROPIC RANDOM SURFACE ’ 159

which we may denote by E,(«’), where »’ is the wave number measured in the direction 4.
The moments of this function are defined by

m, (6) = f :Ee(u') wndu', (8)

The moments m,(f) and mj,(0) are, by definition, related to Eo and Eo¢? in the same way that
m,(0) is related to E. A simple relationship exists between m, () and the moments m,, of
the two-dimensional spectrum. On the one hand

m, (6) = m,,’ocos"ﬁ—l—‘(’lz) Moy ycostOsind+ ... +my 58 (9)
((A), equation (1-4-12)); on the other hand
1 2w

My = f " m(0) Cye(0) 40, (10)

where Coal6) = 555 ein0+(f’ . ‘-’) / (’;) ei("’2)‘9+...—l—(——1)”e“‘i"0] (11)

and (‘b , q) denotes the coefficient of x” in the expansion of (1+x)? (1 —x)? (see (A), §3-2).

When the spectrum has circular symmetry, m,(¢) is independent of § and hence

my, = {(~— 1)k (P%n.‘l)/(%nn) m,, p,q both even;} (12)

0 otherwise.

Similar relations hold between m,(f) and m,,, and between m; () and m,.

It is possible to describe the statistical properties of the surface in terms of the moments
m,(0), m,(0) and m}(0). Nevertheless, for an isotropic spectrum it is more convenient to
use the radial moments, defined by

M,,:f“’ f“’ E(u,0) wrdudo (13)
o M27
- f f E(w) wwdwdd
0J0
—2n f " E(w) w1 dw, | (14)
: 0
and, similarly,
M — f f o (u, v) E(u, v) wdudo (15)
— on f * o (w) E(w) w*dw . (16)
. |
and M, = sz fw o%(u,v) E(u,v) wdudy (17)
— on fw o%(w) E(w) w'dw. (18)
0

20-2
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160 M. S. LONGUET-HIGGINS ON STATISTICAL

The relation of M, to m,(0), when 7 is even, can be found as follows. We have

M, — f f v) (u2+02) dudo (19)

r
= My, o+ (1) Moy_9, 9+ (2) Moy_g, 47 o.My o

OO e C )

from equation (12). The expression in square brackets is the coefficient of x” in

(1—|—x)2’—(1) (142)22 (1—x)24 ...+ (— 1) (1—2)7 = [(142)>— (1 —x)2]"

= [4x]". (21)
2r 2.4.6.....2r
Hence My = 2my(6) / (r) ~1.3.5.. (2r—1) Mar- (22)
Similiarly, we have M;, = : ;" : -6 (272_7 1] My, (23)
" 2.4.6 2r P
and = 1.3.5.....(2r—1) "% (24)
In particular, My =my M,=2m, M,=3%m,. (25)

For an isotropic spectrum the odd moments vanish identically:
m2r+l(‘9) = mérﬂ(ﬁ) = m2r+1(0) = 0. (26)

The odd moments M,,,,, M;,.,, M;,,, do not occur in the present analysis.

Invariants of the spectrum
The following determinants are fundamental for the analysis of the general spectrum:

Ay = meg, (27)
Moy My

A, = s (28)
myy My,

Myy Mgy Moy
Ag=|mg my my |, (29)

Mgy M3 Moy
and, more generally,

Mayr,0  Mop-1,1  --+ My, r
m m . m
2r—1,1 2r—2,2 . r—1,r+1
Apy=| 7.7 7 ] (30)
l mr,r mr—l,r+l m0,2r

The vanishing of A,, is a necessary condition for the spectrum to consist of not more than
r one-dimensional spectra (see (A), §1-3).
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PROPERTIES OF AN ISOTROPIC RANDOM SURFACE 161
Substitution from (12) and (25) shows that for an isotropic spectrum
Ay =my = M,
A, = m§ = FM3, (31)

3
A, = oymi = JgMi.

It can be proved (see Appendix) that, for all 1ntegers r=0,

Ay 2r(r+l) oo ME (32)
As we should expect, A,, vanishes only when M, vanishes, since an isotropic spectrum can
be the sum of a finite number of one-dimensional spectra only in the trivial case when
all the energy is concentrated at the origin.

Since, in an isotropic spectrum, m,(f) is independent of 8, we have my . = My min -
Thus the long-crestedness y~! is given by

)
-1 __ my max.) =1. 33
Y (m2 min, ( )

The invariant quantity (my,+my,), which is independent of the direction of the co-ordinate
axes in the general case, has (from equations (12) and (25)) the value

Mo+ Mgy = M,. , (34)
Another invariant that we shall require is the quadratic expression
3H = mygmy,— 4mgy my3+ 3m3,. ‘ (35)
Substitution from (12) gives 3H = $m?, (36)
and so from (25) H = {5M3. (37)
Therefore for an isotropic spectrum \
%% = 1. | (38)

A ring spectrum

When the surface is isotropic it is impossible for the spectrum to be narrow’ in the sense
- that the energy is concentrated with respect to both wavelength and direction (except in
the trivial case when all the energy is at the origin). However, an interesting special case
is when the energy has predominantly one wavelength 4, that is, when it is concentrated in
a narrow annular region in the (u,v) plane, with centre the origin. If @ = 27/ denotes
the mean radius of the annulus we have approximately

M, = wM,, (39)
and hence MyM, = M2 - (40)
or momy = §m3. (41)
Now from (14) ’

My M,— M3 = f f f f E(uy, v,) E(uy, v,) (wh—w?w3) du, dv, duydo,, (42)
and hence

20, M= M3) = [ [ [ [ Ewny0,) Bty vy) (w3~ u3)? d dvy duy, (43)
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162 M. S. LONGUET-HIGGINS ON STATISTICAL

This quantity is always positive or zero and vanishes only when E(u,v) is a ring spectrum.
Further, in the isotropic case,

(Mo M, —M3) = dr [ [ Ewy) E(uy) (wf—3)? duvyds (44)

which, for a nearly annular spectrum, is proportional to the square of the width of the
annulus. A convenient parameter for specifying the width of the annulus is therefore

5 (MyM,— M)}

i (45)

2. STATISTICAL PROPERTIES

The distribution of surface elevation and gradient

The statistical distribution of the surface elevation { (= £,) is given by equation (2-1-8)
of (A). Substituting m, = M, we have

p(&) = 3 exP (—E1/2M). (46)
(2m M 0t
This is a Gaussian distribution, with mean-square value ;
& = M, (47)
The joint distribution of the two components of gradient
a§ o
= i = En b (48)
is given by
: 1
P(&5,85) = onAs P [ (mo288—2my; §585+myof3) /2] (49)
2

in the general case (see (A), equation (2:1-12)). On substituting from (12) and (31) we have

PEnty) =,,—1M;exp[-—<g%+§%>/M2, (50)

a symmetrical Gaussian distribution in two dimensions. The distributions of §; and (&5, §3)
are statistically independent (see (A), §2-1).
Let us write

(Ent) = (wcost,asing), G228 o (51)

in (50), so that « and § denote the magnitude and direction of the surface gradient. Then
we have for the joint distribution of « and ¢

p(e,0) = CXP (—a?/M), (52)

which is of course independent of 6. The mean-square slope of the surface is given by

i = M, (53)
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PROPERTIES OF AN ISOTROPIC RANDOM SURFACE 163
The distribution of the slope a, regardless of 0, is a Rayleigh distribution:
2
(o) = 37 exp (—o?/My). (54)
2

The distribution of 4, regardless of «, is a constant:
1
#(0) = 5= (55)

The number of zeros per unit distance

If we consider the curve of intersection of the surface by a vertical plane in the direction
6, we may count the number N, of zeros of this curve per unit horizontal distance. From
(A), equation (2-2-5), N, is given by

_1 ”’2(‘9))é 1 (A’—’_z_)*

M= (mo(ﬁ) REACAR (56)
Similarly from equation (2-2-10) of (A) the number of maxima and minima of the curve
per unit distance is given by

vl (m4(ﬁ))% _1 (3_4@)* 57

=7 \my@) ~ 7 \ar) - (57)
In general, the number of zeros, per unit distance, of the rth derivative of the curve is
g]ven by — ..]; (m27‘+2(€))% J— ,]_' (2r+ 1 M27‘+2)% 58)

A\ my(0))  wm\2r+2 M, )" (

Also from (2-2-12) and (2:2-13) of (A) the number of points per unit distance where the
curve crosses the arbitrary level { = £, is

1(My)\}
Nol&) =3 (537) exp (—E3/204y), (59)
and the number of times when the gradient of the curve takes the arbitrary value £, is
1 (3M,)\} »
Nt = (337) exp (—&3/043). (60)
For a ring spectrum, we have
N ___E_(_l_)’}_g(_l‘)% 61
0 T \2 - I a2l ( )
w3\t 23\
M=2() =1 (62)
. _w2r+ 1\t 2 2r41\3 |
and, in general, N, = - (27-{-2) =3 (27_'_2) ) (63)
where 1=2r ~ (64)
w

denotes the characteristic wavelength of the spectrum. For a long-crested wave of the same
wavelength, the number of zero crossings per unit distance would be 2/1 in a direction at
right angles to the crests, and zero in a direction parallel to the crests. Equation (63) shows
that, for an isotropic spectrum, N, is always less than the maximum value 2/1. On the other
hand, for large values of r, N, approaches this value.
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164 M. S. LONGUET-HIGGINS ON STATISTICAL

The length and direction of contours
Let contours be drawn on the surface at the level { = £, = constant; the length of contour
lyinginany given horizontal area will be, on the average, proportional to that area. The mean
length 5 per unit area is shown in (A), §2-3, to be given by
(6) = - (m2°+m°2)%E(*/ L7 exp (—g3/2m,) (65)
A My J(A+7%) el
where y~1 denotes the long-crestedness and E(k) is the Legendre elliptic integral of the
first kind. For an isotropic spectrum we have

y=1, E(/(1—9%)=im, (66)
%
and hence 5(E) = -2—1:/5 (%f) exp (—£2/2M,). (67)

The distribution of contour direction for an isotropic spectrum is of course uniform.

Fieure 1. The pattern formed by two systems of regular waves intersecting at right angles.
, crests of the individual wave systems; ————, troughs of the individual wave systems;
contours of mean level in the combined system; @, maxima of the combined system.

2

For a ring spectrum the average length of contour becomes

- w
5(€) = 3 /2 P (—&3/20,), (68)
and in particular at the mean level { = 0 we have
- w 71 1
s(O):é%—Q—=7§j=2°22...7. (69)

This result may be compared with the simple pattern made by two regular sine waves of
equal wavelength 1 and of equal amplitude intersecting at right angles (see figure 1). It
is easy to see that the contours of zero level run diagonally, making angles of 1 with the
directions of the two sine waves. The distance between adjacent parallel contours is 4/,/2.
The mean length of contour for each diagonal direction is therefore ,/2/4, and the total
mean length is twice this, or

5(0) = 2¢2%= 2-83...%. (70)
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PROPERTIES OF AN ISOTROPIC RANDOM SURFACE - 165

This is somewhat greater than in the isotropic case. However, 5(£;) falls off in a different
fashion in the two cases; clearly for the two intersecting waves 5(§;) vanishes when £, exceeds
twice the amplitude of each wave.

The density of maxima and minima
A very interesting problem is that of the density of maxima, minima or stationary points
per unit horizontal area. It is shown in (A) that for any statistically uniform surface the
density of maxima D, together with the density of minima D_; equals the density of saddle
points D, . Also that for the special surface represented by equation (1), D, = Dy;.

It follows that Dma. = 'Dmi. = 741§Dsta.9. Dsa. = %Dstad (71)

where D,,, denotes the total density of stationary points. The density of specular points,
that is, points where the two components of gradient take given values &, £ is given by

Dy, = Dy, [ — (£3+63) /5] (72)
for an isotropic surface (cf. (A), equation (2-4-66)). '
The evaluation of D, in terms of the energy spectrum of the surface is given by

-1
Dina. =53 —A%g@( —Lyfh)s (73)

where [, >0>1,>1,, these being the three roots (always real) of the cubic equation
43—3HI—A, =0, , (74)

and where @ is a function involving complete elliptic integrals (see (A), equation (2-4- 53))
Substituting for A, and H from (81) and (48) we have

640°—3M,I—Mi=0, (75)
and so (s by bs) = (&M, —§M,, —FM,). (76)
Since, from equation (2-5-55) of (A),
o
o) =575 (77)
1 M o7 1 M,
we have Dma.—gﬁ M, 33 8 3n M, (78)
In particular, for a ring spectrum,
1, w1 1 |
Dus =5 75,7 =5 575~ 007 (79)

This may be compared with the corresponding result for two regular sine waves of equal
wavelength 4, and equal amplitude, crossing at right angles; in that case

1
ma.zﬁ

D (80)

simply. So the density of maxima in the isotropic case is slightly less than for the two
intersecting sine waves.

21 : ‘ Vor. 250. A.
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The velocities of zeros

If a plane section of the surface be taken in a direction ¢ as before, we may consider the
distribution of the velocities of points on this curve which lie at a given level, say { = ¢,.
This would be equivalent to drawing a contour map of the surface and finding the velocities
of the intersections of the contours { = £, with a fixed line in direction 6.

For a general spectrum, the distribution of the velocity is given by

1 A, m}
- = 81
l’(€>§1 2(m6+2mi€_{_m2€2)§ ( )
(see (A), equation (2-5-14)), where
Ay = mgmy—mi2. (82)

For an isotropic spectrum we have

my= My, my=0, 1

y g (83)
my = My, my= %‘Alzaj
. . MM,
giving pe)e = (62_'_210‘23 /i\lz)g' (84)

This distribution is symmetrical about the origin, as we should expect. Its second moment
and standard deviation are infinite, but a measure of its width is the interquartile range,

. 0 (' w
LI o

where ¢ is the phase velocity of the component waves.

It will be noticed that the distribution of ¢ is independent of the particular contour
{ = ¢, at which the velocity is measured.

Similarly, we may consider the velocities ¢, of the maxima and minima of the curve.
From equation (2-5:19) of (A) we find for the distribution of ¢,

2My/3M,

given by

For a ring spectrum this becomes

= . 87
This is of the same form as p(¢) but with an interquartile range of width
4 (My)?
3 (32 (8
For a ring spectrum this becomes
470 -
3= = £ 3 (89)

The distributions of the velocities of higher derivatives of the curve may be found in a
similar way.
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PROPERTIES OF AN ISOTROPIC RANDOM SURFACE 167

The motion of the contours
The motion of a contour may be defined as follows. Let P be a fixed point through which
the contour passes at a given time, and let straight lines be drawn through P parallel to
the axes Ox, Oy. The intersections of the contour with these two lines will move with velo-
cities ¢,, ¢,, say, which determine completely the local motion of the contour. If any other
fixed line is drawn through P in a direction ¢, and if ¢ is the speed of the contour intersection
along it, then it can be shown that
1_ lcosﬂ—l—lsinﬁ. (90)
¢ ¢, ¢y
The reciprocals 1/c,, 1/¢c, will be denoted by «,, «, respectively.
Alternatively we may consider the components ¢,, g, of the velocity of the contour
normal to itself at P. Between (k, «,) and (q,, g,) there is a reciprocal relationship:

' = (K __'fz__)
(4 95) (Kz i o B on

(Ker Ky) = (2—' “Tq"Lz)
qx + q q;t + Qy
(see (A), §2-6).
The statistical distribution of (,, «,) is given by equation (2:6-21) of (A). In the general

case, Pk — L JU7) (2+ad (02)
K)o = A e e P E(J(1—77)) R
WhCI‘C . m20 mu m;O »
Ay=|my my my |, (93)
mio Mg Moo
y~1is the long-crestedness, E is the Legendre elliptic integral of the first kind, and
R = M1K3+2M2kay+]u22’<§_2A413Kx_2M23Ky+M333 (94)
in which () is the matrix inverse to that of A;. In the isotropic case we have
M, O 0
A3 = O \ %-/Mz Y b (95)
0 0 M
and so R=2 (k2+&2) —|——L (96)
A
Setting also y = 1 in (92) we have
2 (M} (k3+x5)*
Hooe =33 (03) [T+ M (7)
whence also ( -
2M (,)’) Gt qy)”
aa)s = (o)) (e dy + antgn %)

These are symmetrical distributions, independent of direction in the horizontal plane.

If we write (qx, q,) = (gcost, gsinf), (99)

21-2
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so that ¢ is the absolute value of the normal velocity, we have
p(9)g = 2mp(9,0)g, = 219P(9:5 9y) (100)
4 (2M, 1
or from (98) 2(9)g, = ;(Mz) (> + 2MME)?" (101)

This distribution has a mode at the origin ¢ = 0. The mean-square value of the veloc1ty
is given by

- 2Mj
. — 52 '
For a ring spectrum, ¢ = _;? = 272, (103)

where 7 is the velocity of a component sine wave in the spectrum.

The velocities of specular points

- As defined above, a specular point is-a point that would be seen by a distant observer as
a point of reflexion of a distant source of light. We may imagine such a point to be followed
continuously. Ifits velocity is denoted by (c,, ¢,) then the distribution of (¢, ¢,) is shown in
(A), §2-7, to depend upon the matrix

(By) = | Me2 Mz Mos | M1y Moy (104)

I4 4
Mgy Mg Mog i My Moy

If (M) denotes the inverse of this matrix, then it is found that

1 3 (115 —n99)®+ N(Nyy — 4Ny,)
, _ - , 105
?(Cx cy)gl,gz 167I2<A2A5)éDma" Ng_ ( )
where (N;) is the symmetric 3 X 3 matrix whose components are
Ny = Myc? —2M,;c, + M)
Ny = Mssc; +2M5Cxcy+M4c —2Msc, —2M,,¢, + My,
N;3 = A4556 ~‘22‘453% + M3, (106)
Ny = Mise 0+ Mysci— Mysc, - (Msf%z) Cy+ Mg,
‘Zv31 = MSch'y —MSCx '_ju'Slcy +‘A4—31’
Ny = Myzez+ M4cx0y — (M +Mj,) Cx"%l"y + M,
d where Moy Myp |
o A= T A =Byl N =N, (107)
My My,
s = Nlesz“szNén} (168)
Ttag == MxNﬁs—N{"‘so
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(D . denotes the density of maxima.) For an isotropic spectrum these expressions are
considerably simplified. Thus (E;) becomes

M, o M, o o
0o M, o 0

— 1 3 .

(:.l.j) = M, 0O M, : 0 0 , (109)

0 0 0 iM; O
0 0 0 0 M

and so
3 1
_]l_l; 0 ——E 0 0
8
0 E 0 0 0
1 3
M)=| "2, ° m O O | (110)
0 0 0 -2—,, 0
2
2
0 0 0 0 m
Hence we have
2¢2+-3 28y —1
. 1
(Mj) = 37 2577 2(§2+772) +8 2&7 ’ (lll)
\ 1 28y 22+3
M;\?}
where & n) = (M“,z,) (€prCy)- (112)

After some reduction we find from (105)

4.3 M, (a2+4) (362+4) (o2+6) + 6ot

4] - " 5 11
p(cx Cy)gl,ﬁz oo M2 » [(062+4;) (3062+4)]% ( 3)
M,

where o =g+ = —Mﬁ,;(cﬁ—l-c;). (114)
To find the distribution of the non-dimensional velocity « we may write

(&) = (acosb, asind), (115)
and so pla) = 2map(E,1) = 2ma it ple, c,), (116)

_ 4
, 2 2 2 4

giving p(a) = 8.3 L TH (a2 +4) (@+6)+ 6o (117)

[(@®+4) (3a>+4)]*
The form of the distribution is shown in figure 2. There is a single maximum, at o = 0-72
approximately. At infinity p(«) is O(a¢~3), so that the second moment diverges. The median
value (dividing the distribution into two equal parts) is at

a=1240... = a,, (118)
21-3
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say. The value a,, has the following significance: if the positions of the specular points are
noted at two successive instants ¢ and ¢+ d¢, half of the points may be observed to have moved
through distances greater than -

(54—2) o, dt (119)

M,
from their original positions.

ol

0-4
p(@)

0-3—

0-1

l | I | | | I | |

0 1 2 o 3 4

F1cure 2. Graph of p(e), showing the form of the probability distribution of the absolute
velocities of specular points.

For a ring spectrum this median distance is
o,zdt, (120)

where ¢ is the velocity corresponding to the wave number .

3. ON THE UNIQUENESS OF THE SPECTRUM

Suppose we are given certain of the statistical properties discussed in §2, the question
arises whether these determine the spectrum uniquely, or to what extent the properties
may be shared by other spectra.

The correlation function ¥ (x,y), if known for all values of x and y, would suffice to
determine E(u,v) under general conditions; for E is simply the cosine transform of y.
However, the properties discussed above are purely local, that is to say, they involve the
behaviour of the surface at one point and its immediate neighbourhood. We have seen that
these properties depend only on the moments M,,, M, of the spectrum (which are the
derivatives of ¢ at the origin). In fact M,, is the 7th moment with respect to f (= w?), of

the function F(f) = F(w?) = nE(w) (121)
defined over 0<f<co.
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The properties which depend on moments M, up to order r = s will be said to be of
order 2s. If all the properties of order up to 2s are known, the moments up to order 2s may
all be determined. For example, from (47) and (59) we have

MO=Z—23
A42,+2_2r+2 2 AT2 . (122)
gV =012,
and therefore M 2.4.6....2 o mNINZ.. NZ,. (123)

T T 1.8.5. ... (2r—1)

Suppose first that the moments of F exist and are known up to infinite order. This does
not determine F uniquely in general (see Kendall 1952, chap. 4), but if certain restrictions
are placed upon F for large values of f—for example, if E is exponentially small at infinity
—then only one function with these moments can exist.

\
g
-
~
P
~
8
-

S
~
rd
T~ 9--

(@) (®)
Fieure 3. Examples of spectra whose statistical properties are isotropic (@) to order 2,
() to order 4.

In practice we may know, or be concerned with, properties up to a finite order 2s only.
Except in special cases, if the moments are known up to a finite order only, infinitely many
functions may be found having these same moments. A particularly simple function is one
consisting of the sum of delta functions. It can be shown (Stieltjes 1894, chap. 1) that if
the moments M,, are specified forr = 0, 1, ..., s, then a function F*, the sum of not more than
[4s+1] positive delta functions, may be found having these same moments and lying in
the range 0<f<co. Hence a combination of not more than [{s-1] ring spectra may be
found which has the required statistical properties, to order 2s.

One can also find non-isotropic spectra with the same statistical properties. Consider,
for example, a surface which is the sum of two pairs of long-crested, incoherent systems of
waves, of equal wavelength and mean-square amplitude, intersecting at right angles
(figure 3a). The spectrum function has the same moments myg, #, 7,1, M, as an isotropic
ring spectrum of the same radius @, for if

myy = M, (124)
then (mags Myy, Mgy) = (WP My, 0,  Fw?M,). (125)


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

172 M. S. LONGUET-HIGGINS ON STATISTICAL

Now by equation (9) both m,(f) and m,(f) depend only on these moments; thus they are
the same as for a ring spectrum, and so independent of §. Hence the number N, of zeros
per unit distance, which is given by equation (56), is also independent of the direction £.
Similarly, all properties depending only on moments of order 0 and 2 will appear as
isotropic, including the distributions of surface slopes and of contour direction.

More generally, if we consider a surface which is the sum of s+ 1 pairs of long-crested
waves travelling in directions § = jm/(s+1) uniformly spaced between 0 and 27, then all
the moments m,, of order p-+¢<2s are the same as for a ring spectrum. Hence N,, N, ...,
N,_, are all independent of §, and so are all properties of order less than or equal to 2s.

The case s = 2 is shown in figure 34. For this surface both the number N, of zeros and
the number », of maxima and minima in a direction 8 are independent of 4.

The general theorem may be quite simply proved as follows. Consider any spectrum in
which the energy is all concentrated on the circle w = w, and in which the distribution of
energy with regard to § is given by some function G(6). The (p, ¢)th moment of the spectrum
is then

My = f z" ubG(6) 6, (126)

q

where (u,v) = (Wcosf, wsind). That is to say,
2m .
My = f T cost 0 sint0G(0) do. (127)
The product cos? d sin?  can be expressed as a trigonometric series in § containing terms in

cosnf and sinnf, where » does not exceed p+¢. Suppose then that the Fourier series for
G(0) is of the form

G(6) = G-+ 3 [, cosnf+ B, sinnf], (128)
n=1
where di=4,=...=45,, =0,
} (129)
B, —B,—..=B,, —0.

Then if p+¢<<(25+1) all terms in (126) will vanish except those arising from the constant
term G. This gives o
Myy = f wh+4 cos? 0 sin?d G d. ' (130)
0
In other words, m,, is the same as for a ring spectrum. Now when the spectrum consists
of s uniformly spaced pairs of wave systems we have

B l,_@_ 25+2 __];7,-
60) = 71 3, 3(0 erl), (131)
where d(f) denotes the Dirac delta function. So
. l 27 B E—Zs+2 J_”J_’_
A,,—Wfo G(0) cosnddd = 73 5 cos T, (132)

which vanishes when n = 1,2, ..., (25+1); and similarly for B,. Thus the conditions (128)
are satisfied.


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

A \
I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PROPERTIES OF AN ISOTROPIC RANDOM SURFACE 173

As a corollary it follows that any spectrum which is periodic in ¢ with period m/(s+1)
will have isotropic properties up to order 2s-+1. For the spectrum may be considered as
the sum of regular systems of point spectra of the type just discussed.

APPENDIX
Proof of equation (32)
Substitution from (7) into (30) gives

Bor = f~oo f..w f_w _wE(ui, Vy) oo E(Uyy1s Vps1)

2 2r—1 7 7
uy’ Uy’ Vg e UiV

2r—1 2r—2,2 r—1,7+1
uyTioy ug Ty L Ut

X du,dv, ...du, dv,,, (A1)
Cu wwt L o
= f f f f E(uy,vy) - E(ty4150041)
— J —0 -0 J =0
1 1 1
vy/uy Voftty o (Vpir[Upir)

(vfug)”  (Vofug)” i (Vprr[tsr)”
X (uyfv,)" (uz/vz)rﬂl cor (U1 f0,41)°

X (U0 UgVg.een tyyy U,y y) duydoy .. du,,  do,, . (A2)

The value of A,, is unaltered by permuting the suffixes 1,2, ..., (r--1) among themselves.
Thus, adding all the (r+1)! different permutations we have R

ety = [ [T [ B e B
1 .

1 1 1
X : : X : :
(”1/”1)"‘ e (Vpprfthprr)” (uyfo)™ oo (Upir[Vrr1)”

X (Uy01UgV5 . Uy Vpry)” duy doy .. gy, doy

= [ Ewme) - B

X H (up/vp_uq/vq) ].—I (vp/up_vq/uq)
b>q b>q

Nows v X (U)ot ) ity oy . iy oy (A3)
ow writing .
(uy,v,) = (w, cos b,, w,sin b)) ,} (Ad)
E(up’ vq) = E(wp)s
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in the above, we have

(r+1)14, — f:fzf:sz(w,) o E(w,))

x TT sin? (0,—0,) wit! ... wit}dw,db, ... dw,,,db,,,

b>q
M2r r+l r2w 2m -
- (E;) f oo [ TIsin2(8,—06,) d6, ... dd,,.,. (A5)
0 0 p>¢q
The multiple integral may be evaluated as follows. Since
sin? (0, —0,) = $(e%% — e2f0) (=20 — e~2it4), (A 6)
we have
1 sin2(6,—0,)
b>q
1 1 e 1 1 1 - 1
1 62101 e2it92 .. e2i0r+1 e—2it91 e—2i02 ... e—2it9,-+ 1
= 57D X . . . . (A7)
e2ri01 e2ri02 . e2ri01+1 e—2r101 e—2ri02 . e—-2ri0r+1

A typical term in the expansion of the first determinant is
1.e%02 etifs eZrifr+1, (A8)

which, when multiplied into the second determinant, gives

l ezi62 e e2riﬁr+1
e-2i01 1 ... e 1)ifr+1
(A9)
e—2ri¢91 e~2(r—1)it92 . 1
The integral of this determinant over the given ranges of 4,, ..., 0, is
2r 0 ... O
0 27 ... O

= (2mr+l. (A10)
0O 0 ... 27
Since the first determinant in (A 7) contributes altogether (z-+1)! such terms we have

27 27 . 1! (27)+1
fo Hsmz(ﬂp—ﬁq)’dﬁl...dﬁrﬂ=%Dl)——. (A11)

0 p>¢q
From this and (A 5) the result follows.
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